VACUUM SCIENCE BLOG

Subscribe
Entries related to: analytical-instruments

The Working Principle of Multistage Roots Vacuum Pumps

Multistage roots pumps are dry vacuum pumps used in low, medium, high and ultra-high vacuum systems to produce “dry” conditions. The simple (single-stage) roots pump is most commonly employed as a booster pump for several types of fore-pumps (such as rotary vane pumps, screw and liquid ring pumps) to improve ultimate pressure and pumping speeds. When multistage roots pumps are employed, no fore pump is required and they can operate from atmospheric pressure. Roots pumps are suitable where a dry and clean atmosphere is important or more likely essential. Consequently, they are frequently used in the manufacture of semiconductors and solar panels, as well as for coatings and other industrial applications.
Read More

Everything you need to know about scroll pumps

In the world of vacuum systems, scroll pumps hold a valuable place as one of the few pumps that are traditionally employed in low (i.e. 1000 mbar to 1 mbar) and medium (i.e. 1 mbar to 10-3 mbar) systems, and yet are now also frequently being employed as fore (or backing) pumps in high and ultra-high (i.e. 10-3 to 10-12 mbar) vacuum systems.
Read More

Vacuum system calculation and simulation services

Vacuum simulation (or modelling) is an essential part of vacuum system design. It is now a well-established practice and is primarily concerned with the prediction and calculation of how vacuum pumps and systems will perform in specific scenarios. These simulations enable engineers to identify anomalies in the design stage and acquire the right components, rather than building a vacuum system that later needs to be redesigned.
Read More

Working with ion getter pumps: everything you need to know

Ion getter pumps (also called sputter ion pumps or simply ion pumps) produce ultra-high vacuum (UHV) without the aid of moving parts or valves. This makes them highly effective, quiet and low maintenance.
Read More

Choosing between different types of vacuum pumps

What do you need to consider when choosing vacuum pumps? Anyone without a deep understanding or knowledge of pumps might think that vacuum generation is simply a question of “plugging in a pump”, starting it up and waiting for the vacuum to drop to the required level.
Read More

Understanding vacuum pressure measurement

When it comes to choosing a vacuum gauge, understanding the application and vacuum pressure measurement required is crucial to making the right choice. But while pressure measurement plays an important role in all vacuum applications, there’s no universal vacuum gauge that will respond accurately throughout the range from atmospheric pressure to 10-12 mbar.
Read More

Working with turbomolecular vacuum pumps

working principle  Turbomolecular pumps (TMPs) are kinetic vacuum pumps which operate using a very fast spinning rotor (usually rotating at between 24,000 and 90,000 RPM). Their typical operating pressures are in the high to ultra-high pressure range between 10-3 and 10-11 mbar, employing pumping speeds of between 10 and 4,000 l/s.
Read More

How to find the right vacuum pump system for your lab work

Laboratory technicians and scientists regularly use vacuum pumps (frequently of the bench-top variety) for a range of tasks including aspirating/filtering, controlling or inducing solvent evaporation in concentrators, as well as in gel driers, vacuum ovens, desiccators and rotary evaporators.
Read More

Introduction to the fundamentals of vacuum science & technology

Described as ‘a space in which the pressure is below surrounding atmospheric pressure’, vacuum science is a subject and concept that has stimulated many great minds for millennia. The origins of vacuum science can be traced back to as early as the 4th century when Aristotle stated that ‘nature abhors a vacuum’. 
Read More

The main CERN vacuum systems explained

The study of particle physics is conducted in machines known as particle accelerators (or particle colliders). These machines use huge electromagnetic fields to accelerate proton particles to velocities approaching the speed of light, focus them into a fine beam, and then monitor the matter that results from their collision with other particles.
Read More